Role of Plasmodium falciparum digestive vacuole plasmepsins in the specificity and antimalarial mode of action of cysteine and aspartic protease inhibitors.
نویسندگان
چکیده
Hemoglobin (Hb) degradation is essential for the growth of the intraerythrocytic stages of malarial parasites. This process, which occurs inside an acidic digestive vacuole (DV), is thought to involve the action of four aspartic proteases, termed plasmepsins (PMs). These enzymes have received considerable attention as potential antimalarial drug targets. Leveraging the availability of a set of PM-knockout lines generated in Plasmodium falciparum, we report here that a wide range of previously characterized or novel aspartic protease inhibitors exert their antimalarial activities independently of their effect on the DV PMs. We also assayed compounds previously shown to inhibit cysteine proteases residing in the DV. The most striking observation was a ninefold increase in the potency of the calpain inhibitor N-acetyl-leucinyl-leucinyl-norleucinal (ALLN) against parasites lacking all four DV PMs. Genetic ablation of PM III or PM IV also decreased the level of parasite resistance to the beta-hematin binding antimalarial chloroquine. On the basis of the findings of drug susceptibility and isobologram assays, as well as the findings of studies of the inhibition of Hb degradation, morphological analyses, and stage specificity, we conclude that the DV PMs and falcipain cysteine proteases act cooperatively in Hb hydrolysis. We also identify several aspartic protease inhibitors, designed to target DV PMs, which appear to act on alternative targets early in the intraerythrocytic life cycle. These include the potent diphenylurea compound GB-III-32, which was found to be fourfold less potent against a P. falciparum line overexpressing plasmepsin X than against the parental nontransformed parasite line. The identification of the mode of action of these inhibitors will be important for future antimalarial drug discovery efforts focusing on aspartic proteases.
منابع مشابه
Order and specificity of the Plasmodium falciparum hemoglobin degradation pathway.
The human malaria parasite, Plasmodium falciparum, degrades nearly all its host cell hemoglobin during a short segment of its intraerythrocytic development. This massive catabolic process occurs in an acidic organelle, the digestive vacuole. Aspartic and cysteine proteases have been implicated in this pathway. We have isolated three vacuolar proteases that account for most of the globin-degradi...
متن کاملDFT Studies and Topological Analyses of Electron Density on Acetophenone and Propiophenone Thiosemicarbazone Derivatives as Covalent Inhibitors of Falcipain-2, a Major Plasmodium Falciparum Cysteine Protease
Thiosemicarbazones (TSCs) possess significant antimalarial properties believed to be linked to the inhibition of major cysteine proteases, such as falcipain-2, in Plasmodium falciparum. However, the binding modes of TSCs to the active site of these enzymes are not clear. As a result of this, the nature of the bonding interactions between the active site of falcipain-2 and different derivatives ...
متن کاملThe role of Plasmodium falciparum food vacuole plasmepsins.
Plasmepsins (PMs) are thought to have an important function in hemoglobin degradation in the malarial parasite Plasmodium falciparum and have generated interest as antimalarial drug targets. Four paralogous plasmepsins reside in the food vacuole of P. falciparum. Targeted gene disruption by double crossover homologous recombination has been employed to study food vacuole plasmepsin function in ...
متن کاملGene disruption confirms a critical role for the cysteine protease falcipain-2 in hemoglobin hydrolysis by Plasmodium falciparum.
Erythrocytic malaria parasites degrade hemoglobin in an acidic food vacuole to acquire free amino acids and maintain parasite homeostasis. Hemoglobin hydrolysis appears to be a cooperative process requiring cysteine proteases (falcipains) and aspartic proteases (plasmepsins), but the specific roles of different enzymes in this process are unknown. We previously showed that falcipain-2 is a majo...
متن کاملSynergistic interactions of the antiretroviral protease inhibitors saquinavir and ritonavir with chloroquine and mefloquine against Plasmodium falciparum in vitro.
The antimalarial activity of several antiretroviral protease inhibitor combinations was investigated. Data demonstrate that ritonavir and saquinavir behave synergistically with chloroquine and mefloquine. These data, and interactions with pepstatin-A, E-64, and bestatin, suggest that human immunodeficiency virus protease inhibitors do not target digestive-vacuole plasmepsins.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 53 12 شماره
صفحات -
تاریخ انتشار 2009